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Generation of uncorrelated random scale-free networks
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Uncorrelated random scale-free networks are useful null models to check the accuracy and the analytical
solutions of dynamical processes defined on complex networks. We propose and analyze a model capable of
generating random uncorrelated scale-free networks with no multiple and self-connections. The model is based
on the classical configuration model, with an additional restriction on the maximum possible degree of the
vertices. We check numerically that the proposed model indeed generates scale-free networks with no two- and
three-vertex correlations, as measured by the average degree of the nearest neighbors and the clustering
coefficient of the vertices of degrée respectively.
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Complex networks constitute a general framework for themore convenient to characterize degree-degree correlations
topological characterization of many natural and technologiby means of the average degree of the nearest neighbors
cal systems whose complexity prevents a more detailed midNN) of the vertices of degrele which is formally defined as
croscopic descriptiof1-3]. Within this framework, these [10]
systems are represented in terms of networks or grgphs
in which vertices stand for the units composing the system, _
while edges among vertices represent the interactions or re- Kon(K) = X K'P(K'[K). (2
lations between pairs of units. The focus is thus shift to the K’
topological characterization of the representative network, a

task which is largely more feasible and yields, nevertheles . , I
a noticeable amount of information on the structure anjf)egree—degree correlations have led to a first classification of

properties of the original system. The empirical analysis off°MPIex networks according to this propeifty1]. Thus,
many real complex networks has unveiled the presence dfhenki(k) is an increasing function d€, the corresponding
several typical properties, widely found in systems belongingietwork is said to exhibiassortative mixing by degreee.,

to a large variety of realms. One of the most relevant is giverighly connected vertices are preferentially connected to
by the scale-free nature of the degree distributiefk) Eghly connected vertices and vice versa, while a decreasing
[1,3,5], defined as the probability that a randomly choserk, (k) function is typical of disassortative mixinghighly
vertex has degrek (i.e., it is connected to othdervertices.  connected vertices being more probably connected to poorly
In mathematical terms, the scale-free property translates inteonnected ones. For uncorrelated networks, the degrees at

a power-law function of the form the end points of any edge are completely independent.
Therefore, the conditional probabilif§(k’ k) can be simply
P(k) ~ K77, (1) estimated as the probability that any edge points to a vertex

of degreek’, leading toP,(k’|k)=k’P(k")/(k), independent

wherey is a characteristic degree exponent. The presence of i |nserting this equation into E¢R), the average nearest-
a scale-free degree distribution can have an important 'mpa‘l:lteighbor degree reads

on the behavior of dynamical processes taking place on top

of the network. Indeed, scale-free networks with exponent

in the range 2 y=<3 show large fluctuations in their de- e (K%

grees, evident in the presence of a diverging second moment kan(K) = @ 3

(k%) in the infinite-network-size limitN—o. This diver-

gence, in turn, shows up in a remarkable weakness of the

network in front of targeted attack$,7] or the propagation that is, independent of the degrke

of infectious agent$8,9]. Analogously, from a theoretical point of view, correlations
It has been recently realized that, besides their degreeoncerning three vertices can be characterized by means of

distribution, real networks are also characterized by the preghe conditional probability?(k”, k' | k) that a vertex of degree

ence of degree correlations. This translates in the observatidnis simultaneously connected to two vertices of degi€es

that the degrees at the end points of any given edge are nahdk”. We can estimate this kind of three-point correlations

usually independent. This kind of degree-degree correlationsy means of the clustering coefficient of the vertices of de-

can be theoretically expressed in terms of the conditionafiree k, c(k) [12,13, defined as the probability that two

probability P(k’ | k) that a vertex of degrekeis connected to  neighbors of a vertex of degrdeare also neighbors them-

a vertex of degre&’. From a numerical point of view, it is selves. This function can be formally written as
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c(k) = 2 P(K",K'[K)p k. 4) i ooy=2.50|1

K K 2L BaYy= 2.75 L

10°F o o—oy=3.00[3

. . . [ % aay=3.50]

where p, \» is the probability that verticek’ and k" are f ese ]
connected given that they have a common neiglibdrl5. = -

nn

An important class of random networks is composed of the | =
so-calledMarkovian network$16], for which all topological
information is encoded into the degree distributl(k) and
the conditional probabilityP(k’ |k). In this case, the three-
vertex conditional probability can be factorized as
P(k", k" |k =P(k"|k)P(k’ |k), for k>1. Furthermore, when 0 o T T T
the network is totally uncorrelated, the connection probabil- (@) k

ity can also be computed agy =(k'—1)(k"=1)/{kN,
where the term -1 comes from the fact that one of the con- 10
nections of each vertex has already been Udeg15,17. : oay=2.75]
From the above relations, the clustering coefficient for un- 2| o—7=3.00|/
correlated random networks becomes i E

S (o R i
) = (6)

This expression was first derived by Newn{d7] (see also
[14,15,18). As in the previous case, for uncorrelated net-
works, the functionc(k) is constant and independe_nt kof

Therefore, any nontrivial dependence of the functikpgk) () k
andc(k) on the degree is a signature of the presence of two- _ _
and three-point correlations, respectively. __ FIG. 1. Average nearest-neighbor degree of vertices of dégree
While most real networks show indeed the presence ofm(k) (&), and average clustering coefficieatk) (b) for the original
correlations, uncorrelated random networks are neverthele§dV algorithm with different degree exponents Network size is
equally important from a practical point of view, especially N=1C.
as null network models in which to test the behavior of dy- . . : ) L o
namical systems whose analytic solution is usually availabld©" distributed according t8(k) and in which, in principle,
only in the absence of correlatiofi§—8,19. Therefore, it there are no Qegree correlations, given the random nature of
becomes an interesting issue the possibility to generate raf?® €dge assignment.
dom networks which have a guaranteed lack of correlations, While thls_presprlptlzon_ works well for bounded degree
In the particular case of scale-free networks, however, fingdistributions, in which(k®) is finite, one has to be more care-
ing such algorithms is far more difficult than one would ex- ful when dealing with networks with a scale-free distribu-
pecta priori. In this paper, we observe that classical algo-tion, which, for 2<y=3, yield diverging fluctuationsk)
rithms, which are supposed to generate uncorrelated, in the infinite-network-size limit. In fact, it is easy to
networks, do, indeed, generate correlations when the desirgge that, if the second moment of the degree distribution
degree distribution is scale free and no more than one edge @verges, a completely random assignment of edges leads to
allowed between any two verticd20,21]. To solve this the construction of an uncorrelated network, but in which a
drawback, we present and test an algorithm capable to gefon-negligible fraction of self-connectiorta vertex joined
erate uncorrelated scale-free networks. to itself) and multiple connectiongtwo vertices connected
The classical algorithm to construct random networksby more than one edgere preseni28]. While multiple and
with any prescribed degree distributi®{k) is the so-called self-connections are completely natural in mathematical
configuration modelCM) [17,22—25. To construct a net- graph theory4], they are somewhat undesired for simulation
work with the original definition of this algorithm, we start Purposes, since most real network do not display such struc-
assigning to each vertéx in a set ofN vertices, a random tures, and also in order to avoid ambiguities in the definition
numberk of “stubs"—ends of edges emerging from the Of the network and any dynamics on top of it. This situation
vertex—drawn from the probability distributioR(k), with ~ can be avoided by imposing the additional constraint of for-
m<k <N (no vertex can have a degree larger thén1)  bidding multiple anq seIf.-connecnons.. This constraint, hqw—
and imposing the constraint that the siijk, must be even. €ver, has the negative side effect of introducing correlations
The network is completed by connecting pairs of these stub$ the network{20,21. As an example of this fact, in Fig. 1
chosen uniformly at random to make complete edges, rewe show the functionk, (k) andc(k) computed from nu-
specting the preassigned sequekcdhe result of this con- merical simulations of the CM algorithm with no multiple
struction is a random network whose degrees are, by definand self-connections for differentexponents and fixed net-
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IS ] Since it is the maximum possible value of the degrees in
10 F 4 the network that rules the presence or absence of correlations
; ] in a random network with no multiple or self-connections,
we propose the followingincorrelated configuration model
s L (UCM) in order to generate random uncorrelated scale-free
10 10° 10" 102 10° networks.
(b k (i) Assign to each vertek in a set ofN initially discon-

nected vertices, a numbkrof stubs, wheré; is drawn from
FIG. 2. Average nearest-neighbor degree of vertices of ddgree the probability distributiorP(k) ~k™” and subject to the con-
kan(K) (8, and average clustering coefficiextk) (b) for the UCM  Straintsmsk;< NY2andXk; even.
algorithm with different degree exponenis Network size isN (i) Construct the network by randomly choosing stubs
=1CP. and connecting them to form edges, respecting the preas-
signed degrees and avoiding multiple and self-connections.
This algorithm can be implemented in practice as follows

work sizeN=10. As we can observe, foy>3, which cor- 29]: Once the degrek is assigned, a list af;k; elements is

fr_e;porllgs tt)o ‘m effe_ctlvely bo:mdedﬂdegr_ee <j|!str|but|on dW't reated, containing; copies of theith vertex. A pair of ele-
inite (k%), both functions are almost flat, signaling an evident,,o s in this list is randomly chosen to create an edge. If the
lack of correlations. On the other hand, for valyes 3 there  glements are equal or correspond to an already existing edge,
is a clear presence of correlations. This correlations have fhey are discarded and a new pair is drawn. Otherwise, the
mixed disassortative nature: vertices with many connectiongdge is accepted and the list is updated, eliminating the ele-
tend to be connected to vertices with few connections, whilgnents corresponding to the newly created edge. This proce-
low-degree vertices connect equally with vertices of any dedure is iterated until all elements in the list are exhausted.
gree. The constraint on the maximum possible degree of the ver-
The origin of this phenomenon can be traced back to theices ensures th&t(N) ~ N2, allowing for the possibility to
effects of the cutoffor maximum expected degrele(N) in construct uncorrelated networks. As an additional numerical
a network of sizeN. In fact, it is possible to show that in optimization of this algorithm, we also impose the minimum
order to have no correlations in the absence of multiple andegreem=2 to generate connected networks with probability
self-connections, a scale-free network with degree distribuene[25,30.
tion P(k) ~ k™ and sizeN must have a cutoff scaling at most  In Fig. 2 we check for the presence of correlations in the
asks(N) ~ N2 (the so-called structural cutgfi26—2§. Fora  UCM for scale-free networks. As we can observe, both cor-
power-law network generated using the CM algorithm de+elation functions show an almost flat behavior for all values
fined above(i.e., generating random degrees in the range of the degree exponent compatible with the lack of corre-
<k <N), simple extreme value theory arguments show inlations at the two and three vertex levels.
fact that We have additionally explored the validity of the expres-
k(N) ~ NMO-D), 6) sion for the average clustering coeffici¢di] (c), defined as

For y<3, we have thak,(N)>N2 and therefore it is im- (¢)=2 P(kiclK), (7)
possible to avoid the presence of correlations. Only for the :

particular casey=3 do we recovek,(N) <N¥2, which ex-  which, for random uncorrelated networks, takes the form
plains the lack of correlations observed in Fig. 1 {6r3.5.  given by Eq.(5). For scale-free networks with a general cut-
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off k.(N), we have that, in the largd-limit, (k) ~k.(N)3™”.  multiple and self-connections and arbitrary degree distribu-
Therefore, for random networks generated with the classicdlon. The lack of correlations is especially relevant for the
CM model, in whichk,(N)~NY"D we have thatc)cyy  case of scale-free networks. In this case, our algorithm is
~N7=3/-D_ This expression is clearly anomalous fer capable to generate networks with flat correlation functions
<7/3, since it leads to a diverging clustering coefficient forand an average clustering coefficient in good agreement with
large N, while, by definition, this magnitude, being a prob- theoretical predictions. Our algorithm is potentially interest-
ab|l|ty, must be Sma||el’ than 1. ThlS anomaly VaniSheS in theng in order to Check the accuracy Of the many ana'ytica'
UCM prescription. In this case, we have thatN) ~N"?for  go|utions of dynamical processes taking place on top of com-
any value ofy, leading to(c)ycm~ N°7?, which is a decreas- plex networks, which are usually found in the uncorrelated
ing function of the network size for any>2. limit and, which, up to now, lacked a proper benchmark to

In Fig. 3 we plot the average clustering coefficient ob-check the results for degree exponets 3.
tained from numerical simulations of the CM and UCM al-

gorithms as a function of the theoretical value, £, for This work has been partially supported by EC-FET Open
different values ofy and different network sizeN. We can  Project No. IST-2001-33555. R.P.-S. acknowledges financial
observe that, while the results for the uncorrelated UCMsupport from the Ministerio de Ciencia y Tecnolog&pain
nicely collapses onto the diagonal line in the plot, meaningand from the Departament d’Universitats, Recerca i Societat
that the numerical values are almost equal to their theoreticale la Informacio, Generalitat de Cataluni@pair). M.B. ac-
counterparts, noticeable departures are observed for the irkhowledges financial support from the Ministerio de Ciencia
plicitly correlated CM algorithm. y Tecnologia through the Ramén y Cajal program. M.C. ac-

To sum up, in this Brief Report we have presented aknowledges financial support from Universitat Politécnica de
model to generate uncorrelated random networks with n€atalunya.
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