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Uncorrelated random scale-free networks are useful null models to check the accuracy and the analytical
solutions of dynamical processes defined on complex networks. We propose and analyze a model capable of
generating random uncorrelated scale-free networks with no multiple and self-connections. The model is based
on the classical configuration model, with an additional restriction on the maximum possible degree of the
vertices. We check numerically that the proposed model indeed generates scale-free networks with no two- and
three-vertex correlations, as measured by the average degree of the nearest neighbors and the clustering
coefficient of the vertices of degreek, respectively.
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Complex networks constitute a general framework for the
topological characterization of many natural and technologi-
cal systems whose complexity prevents a more detailed mi-
croscopic descriptionf1–3g. Within this framework, these
systems are represented in terms of networks or graphsf4g,
in which vertices stand for the units composing the system,
while edges among vertices represent the interactions or re-
lations between pairs of units. The focus is thus shift to the
topological characterization of the representative network, a
task which is largely more feasible and yields, nevertheless,
a noticeable amount of information on the structure and
properties of the original system. The empirical analysis of
many real complex networks has unveiled the presence of
several typical properties, widely found in systems belonging
to a large variety of realms. One of the most relevant is given
by the scale-free nature of the degree distributionPskd
f1,3,5g, defined as the probability that a randomly chosen
vertex has degreek si.e., it is connected to otherk verticesd.
In mathematical terms, the scale-free property translates into
a power-law function of the form

Pskd , k−g, s1d

whereg is a characteristic degree exponent. The presence of
a scale-free degree distribution can have an important impact
on the behavior of dynamical processes taking place on top
of the network. Indeed, scale-free networks with exponentg
in the range 2,gø3 show large fluctuations in their de-
grees, evident in the presence of a diverging second moment
kk2l in the infinite-network-size limitN→`. This diver-
gence, in turn, shows up in a remarkable weakness of the
network in front of targeted attacksf6,7g or the propagation
of infectious agentsf8,9g.

It has been recently realized that, besides their degree
distribution, real networks are also characterized by the pres-
ence of degree correlations. This translates in the observation
that the degrees at the end points of any given edge are not
usually independent. This kind of degree-degree correlations
can be theoretically expressed in terms of the conditional
probability Psk8 ukd that a vertex of degreek is connected to
a vertex of degreek8. From a numerical point of view, it is

more convenient to characterize degree-degree correlations
by means of the average degree of the nearest neighbors
sNNd of the vertices of degreek, which is formally defined as
f10g

k̄nnskd = o
k8

k8Psk8ukd. s2d

Degree-degree correlations have led to a first classification of
complex networks according to this propertyf11g. Thus,

whenk̄nnskd is an increasing function ofk, the corresponding
network is said to exhibitassortative mixing by degree; i.e.,
highly connected vertices are preferentially connected to
highly connected vertices and vice versa, while a decreasing

k̄nnskd function is typical of disassortative mixing, highly
connected vertices being more probably connected to poorly
connected ones. For uncorrelated networks, the degrees at
the end points of any edge are completely independent.
Therefore, the conditional probabilityPsk8 ukd can be simply
estimated as the probability that any edge points to a vertex
of degreek8, leading toPncsk8 ukd=k8Psk8d / kkl, independent
of k. Inserting this equation into Eq.s2d, the average nearest-
neighbor degree reads

k̄nn
ncskd =

kk2l
kkl

, s3d

that is, independent of the degreek.
Analogously, from a theoretical point of view, correlations

concerning three vertices can be characterized by means of
the conditional probabilityPsk9 ,k8 ukd that a vertex of degree
k is simultaneously connected to two vertices of degreesk8
andk9. We can estimate this kind of three-point correlations
by means of the clustering coefficient of the vertices of de-
gree k, c̄skd f12,13g, defined as the probability that two
neighbors of a vertex of degreek are also neighbors them-
selves. This function can be formally written as
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c̄skd = o
k8,k9

Psk9,k8ukdpk8,k9, s4d

where pk8,k9 is the probability that verticesk8 and k9 are
connected given that they have a common neighborf14,15g.
An important class of random networks is composed of the
so-calledMarkovian networksf16g, for which all topological
information is encoded into the degree distributionPskd and
the conditional probabilityPsk8 ukd. In this case, the three-
vertex conditional probability can be factorized as
Psk9 ,k8 ukd=Psk9 ukdPsk8 ukd, for k.1. Furthermore, when
the network is totally uncorrelated, the connection probabil-
ity can also be computed aspk8,k9=sk8−1dsk9−1d / kklN,
where the term −1 comes from the fact that one of the con-
nections of each vertex has already been usedf14,15,17g.
From the above relations, the clustering coefficient for un-
correlated random networks becomes

c̄ncskd =
skk2l − kkld2

kkl3N
. s5d

This expression was first derived by Newmanf17g ssee also
f14,15,18gd. As in the previous case, for uncorrelated net-
works, the functionc̄skd is constant and independent ofk.

Therefore, any nontrivial dependence of the functionsk̄nnskd
and c̄skd on the degree is a signature of the presence of two-
and three-point correlations, respectively.

While most real networks show indeed the presence of
correlations, uncorrelated random networks are nevertheless
equally important from a practical point of view, especially
as null network models in which to test the behavior of dy-
namical systems whose analytic solution is usually available
only in the absence of correlationsf6–8,19g. Therefore, it
becomes an interesting issue the possibility to generate ran-
dom networks which have a guaranteed lack of correlations.
In the particular case of scale-free networks, however, find-
ing such algorithms is far more difficult than one would ex-
pect a priori. In this paper, we observe that classical algo-
rithms, which are supposed to generate uncorrelated
networks, do, indeed, generate correlations when the desired
degree distribution is scale free and no more than one edge is
allowed between any two verticesf20,21g. To solve this
drawback, we present and test an algorithm capable to gen-
erate uncorrelated scale-free networks.

The classical algorithm to construct random networks
with any prescribed degree distributionPskd is the so-called
configuration modelsCMd f17,22–25g. To construct a net-
work with the original definition of this algorithm, we start
assigning to each vertexi, in a set ofN vertices, a random
number ki of “stubs”—ends of edges emerging from the
vertex—drawn from the probability distributionPskd, with
møki ,N sno vertex can have a degree larger thanN−1d
and imposing the constraint that the sumoiki must be even.
The network is completed by connecting pairs of these stubs
chosen uniformly at random to make complete edges, re-
specting the preassigned sequenceki. The result of this con-
struction is a random network whose degrees are, by defini-

tion, distributed according toPskd and in which, in principle,
there are no degree correlations, given the random nature of
the edge assignment.

While this prescription works well for bounded degree
distributions, in whichkk2l is finite, one has to be more care-
ful when dealing with networks with a scale-free distribu-
tion, which, for 2,gø3, yield diverging fluctuations,kk2l
→`, in the infinite-network-size limit. In fact, it is easy to
see that, if the second moment of the degree distribution
diverges, a completely random assignment of edges leads to
the construction of an uncorrelated network, but in which a
non-negligible fraction of self-connectionssa vertex joined
to itselfd and multiple connectionsstwo vertices connected
by more than one edged are presentf28g. While multiple and
self-connections are completely natural in mathematical
graph theoryf4g, they are somewhat undesired for simulation
purposes, since most real network do not display such struc-
tures, and also in order to avoid ambiguities in the definition
of the network and any dynamics on top of it. This situation
can be avoided by imposing the additional constraint of for-
bidding multiple and self-connections. This constraint, how-
ever, has the negative side effect of introducing correlations
in the networkf20,21g. As an example of this fact, in Fig. 1

we show the functionsk̄nnskd and c̄skd computed from nu-
merical simulations of the CM algorithm with no multiple
and self-connections for differentg exponents and fixed net-

FIG. 1. Average nearest-neighbor degree of vertices of degreek,

k̄nnskd sad, and average clustering coefficientc̄skd sbd for the original
CM algorithm with different degree exponentsg. Network size is
N=105.
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work sizeN=105. As we can observe, forg.3, which cor-
responds to an effectively bounded degree distribution with
finite kk2l, both functions are almost flat, signaling an evident
lack of correlations. On the other hand, for valuesgø3 there
is a clear presence of correlations. This correlations have a
mixed disassortative nature: vertices with many connections
tend to be connected to vertices with few connections, while
low-degree vertices connect equally with vertices of any de-
gree.

The origin of this phenomenon can be traced back to the
effects of the cutoffsor maximum expected degreed kcsNd in
a network of sizeN. In fact, it is possible to show that in
order to have no correlations in the absence of multiple and
self-connections, a scale-free network with degree distribu-
tion Pskd,k−g and sizeN must have a cutoff scaling at most
askssNd,N1/2 sthe so-called structural cutoffd f26–28g. For a
power-law network generated using the CM algorithm de-
fined abovesi.e., generating random degrees in the rangem
øki ,Nd, simple extreme value theory arguments show in
fact that

kcsNd , N1/sg−1d. s6d

For g,3, we have thatkcsNd.N1/2 and therefore it is im-
possible to avoid the presence of correlations. Only for the
particular casegù3 do we recoverkcsNdøN1/2, which ex-
plains the lack of correlations observed in Fig. 1 forg=3.5.

Since it is the maximum possible value of the degrees in
the network that rules the presence or absence of correlations
in a random network with no multiple or self-connections,
we propose the followinguncorrelated configuration model
sUCMd in order to generate random uncorrelated scale-free
networks.

sid Assign to each vertexi, in a set ofN initially discon-
nected vertices, a numberki of stubs, whereki is drawn from
the probability distributionPskd,k−g and subject to the con-
straintsmøki øN1/2 andoiki even.

sii d Construct the network by randomly choosing stubs
and connecting them to form edges, respecting the preas-
signed degrees and avoiding multiple and self-connections.

This algorithm can be implemented in practice as follows
f29g: Once the degreeki is assigned, a list ofoiki elements is
created, containingki copies of theith vertex. A pair of ele-
ments in this list is randomly chosen to create an edge. If the
elements are equal or correspond to an already existing edge,
they are discarded and a new pair is drawn. Otherwise, the
edge is accepted and the list is updated, eliminating the ele-
ments corresponding to the newly created edge. This proce-
dure is iterated until all elements in the list are exhausted.
The constraint on the maximum possible degree of the ver-
tices ensures thatkcsNd,N1/2, allowing for the possibility to
construct uncorrelated networks. As an additional numerical
optimization of this algorithm, we also impose the minimum
degreem=2 to generate connected networks with probability
one f25,30g.

In Fig. 2 we check for the presence of correlations in the
UCM for scale-free networks. As we can observe, both cor-
relation functions show an almost flat behavior for all values
of the degree exponentg, compatible with the lack of corre-
lations at the two and three vertex levels.

We have additionally explored the validity of the expres-
sion for the average clustering coefficientf31g kcl, defined as

kcl = o
k

Pskdc̄skd, s7d

which, for random uncorrelated networks, takes the form
given by Eq.s5d. For scale-free networks with a general cut-

FIG. 2. Average nearest-neighbor degree of vertices of degreek,

k̄nnskd sad, and average clustering coefficientc̄skd sbd for the UCM
algorithm with different degree exponentsg. Network size isN
=105.

FIG. 3. Numerical average clustering coefficientkcl as a func-
tion of the corresponding theoretical value, given by Eq.s5d, for the
CM sopen symbolsd and the UCMssolid symbolsd algorithms. The
different points for each value ofg represent different network sizes
N=103, 33103, 104, 33104, and 105.
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off kcsNd, we have that, in the large-N limit, kk2l,kcsNd3−g.
Therefore, for random networks generated with the classical
CM model, in whichkcsNd,N1/sg−1d, we have thatkclCM

,Ns7−3gd/sg−1d. This expression is clearly anomalous forg
,7/3, since it leads to a diverging clustering coefficient for
large N, while, by definition, this magnitude, being a prob-
ability, must be smaller than 1. This anomaly vanishes in the
UCM prescription. In this case, we have thatkcsNd,N1/2 for
any value ofg, leading tokclUCM,N2−g, which is a decreas-
ing function of the network size for anyg.2.

In Fig. 3 we plot the average clustering coefficient ob-
tained from numerical simulations of the CM and UCM al-
gorithms as a function of the theoretical value, Eq.s5d, for
different values ofg and different network sizesN. We can
observe that, while the results for the uncorrelated UCM
nicely collapses onto the diagonal line in the plot, meaning
that the numerical values are almost equal to their theoretical
counterparts, noticeable departures are observed for the im-
plicitly correlated CM algorithm.

To sum up, in this Brief Report we have presented a
model to generate uncorrelated random networks with no

multiple and self-connections and arbitrary degree distribu-
tion. The lack of correlations is especially relevant for the
case of scale-free networks. In this case, our algorithm is
capable to generate networks with flat correlation functions
and an average clustering coefficient in good agreement with
theoretical predictions. Our algorithm is potentially interest-
ing in order to check the accuracy of the many analytical
solutions of dynamical processes taking place on top of com-
plex networks, which are usually found in the uncorrelated
limit and, which, up to now, lacked a proper benchmark to
check the results for degree exponentsg,3.
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